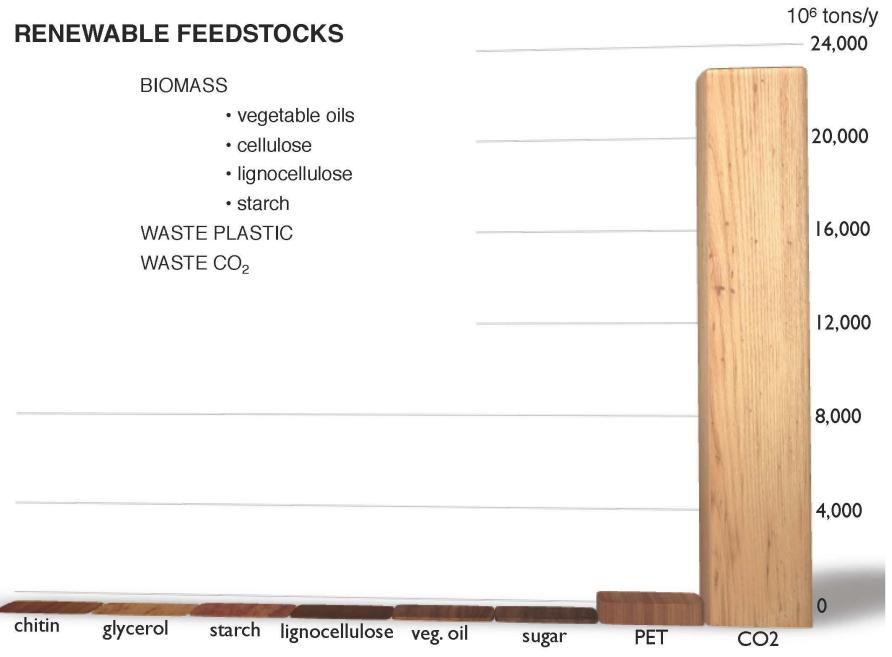
# Chapter IV: Molecular Catalysis for CO<sub>2</sub> Reduction

#### Table of contents

- Scale of CO<sub>2</sub> chemistry
- Fundamental chemistry of CO<sub>2</sub>
- Molecular catalysis for electrochemical reduction of CO<sub>2</sub>

## I. Scale of CO<sub>2</sub> chemistry

#### Chemical methods of removing (utilizing) CO<sub>2</sub>


- 1. plant more trees (capacity, respiration balance)
- 2. make coca-cola etc.
- 3. make urea, carbonate, etc.

$$2 \text{ NH}_3 + \text{CO}_2 \rightarrow \text{H}_2\text{N-COONH}_4$$
  
 $\text{H}_2\text{N-COONH}_4 \rightarrow (\text{NH}_2)_2\text{CO} + \text{H}_2\text{O}$ 

4. make bio-degradable polymer



Nice, useful, and sometimes profitable chemistry
All small scale compared to the 20 billions of tons of CO<sub>2</sub> released every year...



#### Some CO<sub>2</sub> chemistry that are scalable

1. With hydrogen – consider CO<sub>2</sub> as a storage media for H<sub>2</sub>
Hydrogen need to be produced from renewable energies via water splitting

#### **Option A:**

$$CO_2 + H_2 \rightarrow HCOOH$$

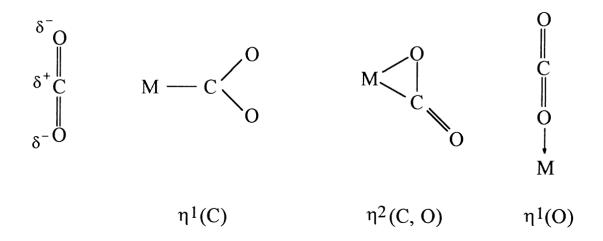
Use:

- (1) Formic acid can be used as energy source for formic acid fuel cell
- (2) Formic acid is a liquid, and it is easy to carry. Formic acid can decompose to  $CO_2$  and  $H_2$  easily, with the help of a catalyst. So formic acid can be considered as a hydrogen storage materials. 4.3 wt%.

#### **Option B:**

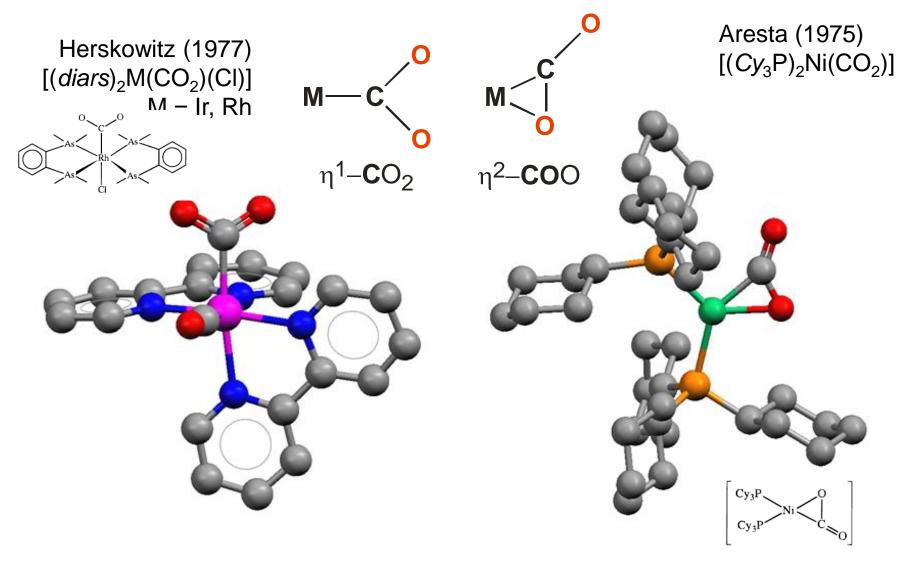
$$CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$$

Use:


- (1) Methanol can be used as energy source for methanol fuel cell
- (2) Methanol can be used for direct combustion, to replace petro
- (3) Methanol is the starting materials to make nearly all chemical products that are produced from fossil resources

# II. Fundamental chemistry of CO<sub>2</sub>

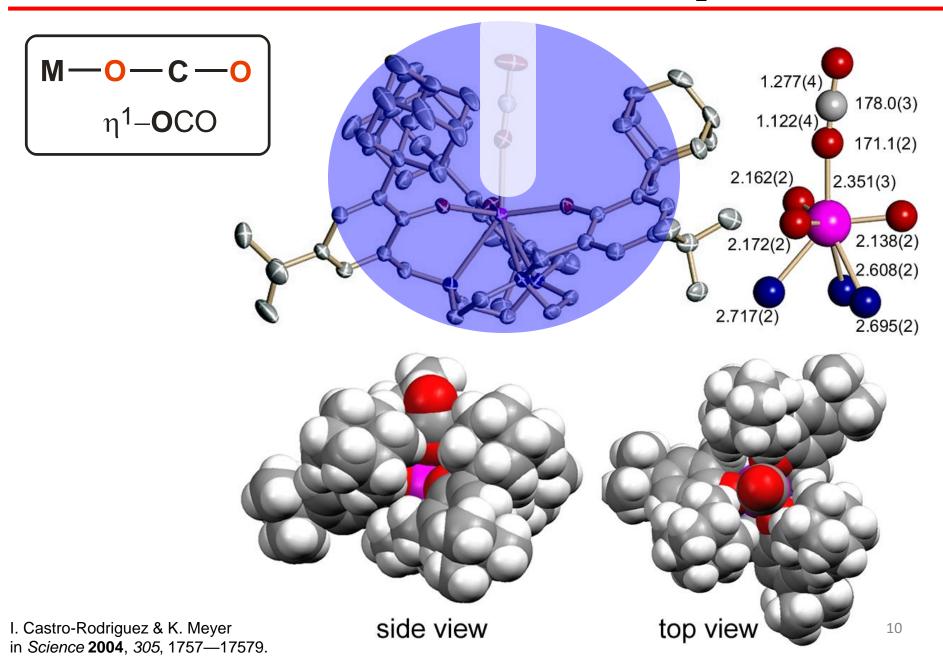
#### Interactions of CO<sub>2</sub> and transition metals


A metal is often used to activate CO<sub>2</sub>

Typical binding modes of CO<sub>2</sub>



The first two coordination modes are commonly observed; the last one is rarely observed, but it might be invloved as unstable catalytic intermediates.


#### Common coordination modes of CO<sub>2</sub>



H. Tanaka et al.
Organometallics (1992) 11, 1450

A. Dohring et al. Z. Naturforsch. (1985) 40, 484

#### A rare coordination mode of CO<sub>2</sub>



#### CO<sub>2</sub> as a bridging ligand

The coordination of M to the central C atom results in a relatively high negative charge on the terminal O atoms and increase in their nucleophilicity, thus promoting its coordination to another metal (M' and M'').

$$M = C \longrightarrow M'$$

$$M =$$

#### A fundamental step in metal-catalyzed CO<sub>2</sub> reduction

#### CO<sub>2</sub> insert into M-H bond

In this reaction, CO<sub>2</sub> may or may not first coordinate to the metal

#### Summary of fundamental chemistry of CO<sub>2</sub>

- ➤ CO₂ is an inert molecule. The reactivity of CO₂ can be enhanced by interaction with a catalyst.
- > Several basic coordination modes of CO<sub>2</sub> to metal(s) are known.
- ➤ Insertion of CO2 to a metal-H bond is an imporant step in chemical reduction of CO₂.

# III. Molecular catalysis for electrochemical reduction of CO<sub>2</sub>

#### Why electrochemical reduction CO<sub>2</sub>?

#### Electrochemical CO<sub>2</sub> reduction is an alternative to water splitting

#### Energy stored:

Water splitting: 
$$2 \text{ H}_2\text{O} \xrightarrow{\text{energy}} 2 \text{ H}_2 + \text{O}_2 \qquad \text{E} = 1.23 \text{ V}$$

$$E = 1.23 V$$

$$2CO_2 \xrightarrow{\text{energy}} 2CO + O_2 \qquad E = 1.34 \text{ V}$$

$$2CO_2 + 2H_2O \xrightarrow{\text{energy}} 2HCOOH + O_2 \qquad E = 1.43 \text{ V}$$

$$CO_2 + H_2O \xrightarrow{\text{energy}} HCOH + O_2 \qquad E = 1.30 \text{ V}$$

$$2CO_2 + 4H_2O \xrightarrow{\text{energy}} 2H_3COH + 3O_2 \qquad E = 1.20 \text{ V}$$

$$CO_2 + 2H_2O \xrightarrow{\text{energy}} H_4C + 2O_2 \qquad E = 1.06 \text{ V}$$

All these C-based fuels have higher density than H<sub>2</sub>, so they are easier to store and transport.

An overall CO<sub>2</sub> reduction reaction consistes of two half reactions: (1)Oxygen evolution reaction (OER)

$$2H_2O \rightarrow O_2 + 4 H^+ + 4 e^-$$

(2) Electrochemical CO<sub>2</sub> reduction

$$CO_2 + 2H^+ + 2e^ \longrightarrow$$
  $CO + H_2O$   
 $CO_2 + 2H^+ + 2e^ \longrightarrow$   $+ COOH$   
 $CO_2 + 4H^+ + 4e^ \longrightarrow$   $+ COH + H_2O$   
 $CO_2 + 6H^+ + 6e^ \longrightarrow$   $+ CH_3OH + H_2O$   
 $+ CO_2 + 8H^+ + 8e^ \longrightarrow$   $+ CH_4 + 2H_2O$ 

#### Thermodynamic aspects of electrochemical CO<sub>2</sub> reduction

1 e reduction of CO<sub>2</sub> is difficult, because CO<sub>2</sub> radical is very unstable

$$CO_2 + e^- \longrightarrow CO_2$$
  $E^\circ < -1.5 \text{ V vs. RHE}$ 

Multi-e reduction of CO<sub>2</sub> have lower thermodynamic potentials (vs. RHE)

Compare to hydrogen evolution:

$$2H^{+} + 2e^{-} = 0 \text{ V}$$

#### Challenge in electrochemical CO<sub>2</sub> reduction

#### Challenge for catalysis

- 1. The thermodynamic potentials of CO<sub>2</sub> reduction are close to hydrogen evolution. Proton is more reactive than CO<sub>2</sub>. Therefore, hydrogen evolution is a common side reaction. To alleviate hydrogen evolution, CO2 reduction is commonly done in neutral to basic water, or in organic solvents.
- 2. Many carbon-based products are produced at similar potentials. The selectivity of CO<sub>2</sub> reduction is a problem.
- 3. Known catalysts have generally a low efficiency: small current density at high overpotentials.
- 4. The common problems for all electrocatalysts cost and stability of catalysts

$$CO_2 + 2H^+ + 2e^ \longrightarrow$$
  $CO + H_2O$   
 $CO_2 + 2H^+ + 2e^ \longrightarrow$   $+COOH$   
 $CO_2 + 4H^+ + 4e^ \longrightarrow$   $+COH + H_2O$   
 $CO_2 + 6H^+ + 6e^ \longrightarrow$   $+CH_3OH + H_2O$   
 $+CO_2 + 8H^+ + 8e^ \longrightarrow$   $+CH_4 + 2H_2O$ 

Among various CO<sub>2</sub> reduction reactions, we will only focus on the 2e reduction to form either CO or HCOOH as products. There are two reasons for this:

- (1) The energy content of CO or HCOOH is even higher than CH<sub>3</sub>OH or CH<sub>4</sub>.
- (2) 2e reduction is generally easier to control than 6e or 8e reduction.

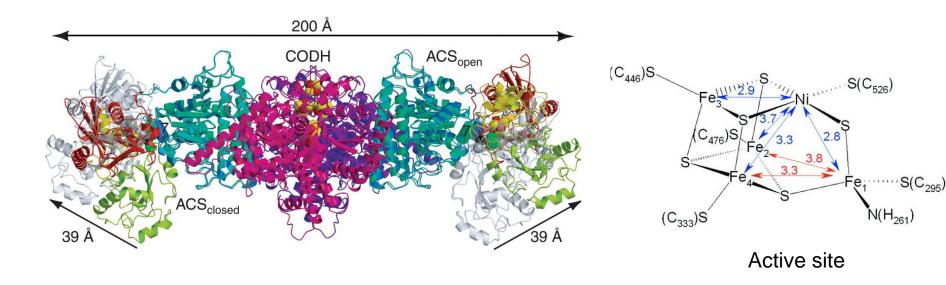
$$2CO_{2} \xrightarrow{\text{energy}} 2CO + O_{2} \qquad E = 1.34 \text{ V}$$

$$2CO_{2} + 2H_{2}O \xrightarrow{\text{energy}} 2HCOOH + O_{2} \qquad E = 1.43 \text{ V}$$

$$CO_{2} + H_{2}O \xrightarrow{\text{energy}} HCOH + O_{2} \qquad E = 1.30 \text{ V}$$

$$2CO_{2} + 4H_{2}O \xrightarrow{\text{energy}} 2H_{3}COH + 3O_{2} \qquad E = 1.20 \text{ V}$$

$$CO_{2} + 2H_{2}O \xrightarrow{\text{energy}} H_{4}C + 2O_{2} \qquad E = 1.06 \text{ V}$$


### III-1. A biological catalyst

#### Enzymatic CO<sub>2</sub> Reduction: FeNi-CODH

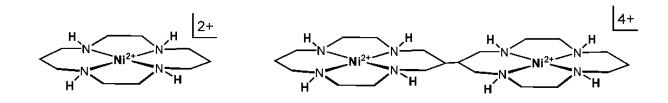
Carbon monoxide dehydrogenases (CODH) are enzymes that catalyze the electrochemical interconversion of CO<sub>2</sub> and CO.

$$CO_2 + 2H^+ + 2e^ CO + H_2O$$

The anaerobic form of enzyme contains FeNi in the active site.

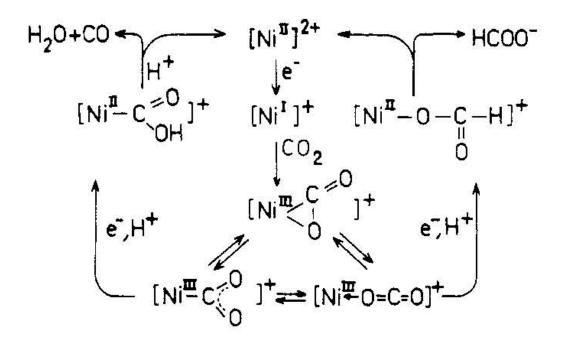


Crystal structure of FeNi-CODH (in a protein assembly).


#### Proposed mechanism of CO<sub>2</sub> reduction by FeNi-CODH

$$\begin{array}{c} \text{CO} & (C_{526})S \\ S = N_1^{1/2} - OH \\ S = Fe - S \\ S = Fe - S \\ N(H_{261}) \end{array}$$

### III-2. Molecular catalysts


#### Electrocatalytic 2 electron CO<sub>2</sub> reduction

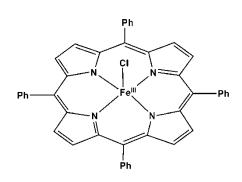
$$CO_2 + 2H^+ + 2e^ \longrightarrow$$
  $CO + H_2O$   $E = -0.11 V vs. RHE 
 $CO_2 + 2H^+ + 2e^ \longrightarrow$   $CO + H_2O$   $E = -0.20 V vs. RHE 
 $2H^+ + 2e^ \longrightarrow$   $H_2$   $E = 0 V vs. RHE$$$ 

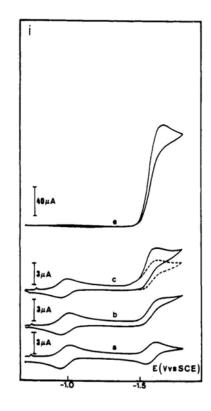


These nickel complexes were found to catalyze CO<sub>2</sub> reuction in DMF At -1.6 V vs. SCE; the product is a mixture of CO and HCOOH

#### Origin of the different products




Whether CO or HCOOH is produced depending on the intermediates of Ni-CO<sub>2</sub> complex; A C-bound CO<sub>2</sub> leads to CO; a O-bound CO<sub>2</sub> leads to HCOOH


at pH>4 in water, however, only CO is produced with these complexes. At  $E = \sim -1$  V vs. RHE. No HCOOH nor  $H_2$  is produced. So the reaction is selective for CO formation.

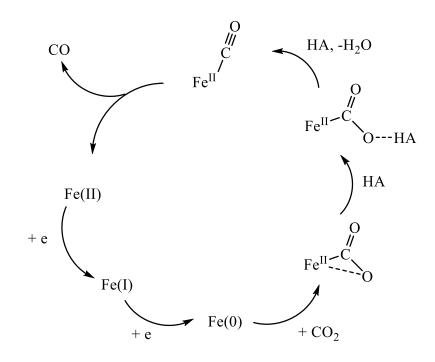


Hydrogen Bonding

It is proposed that hydrogen bonding interaction between the NH ligand and the terminal O of coordinated CO<sub>2</sub> stablized the C-bound Ni-CO<sub>2</sub> intermedaite, so CO formation is selective.



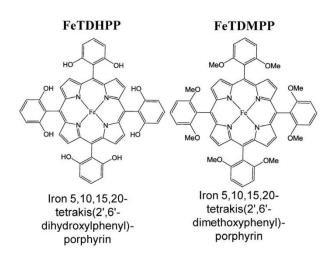


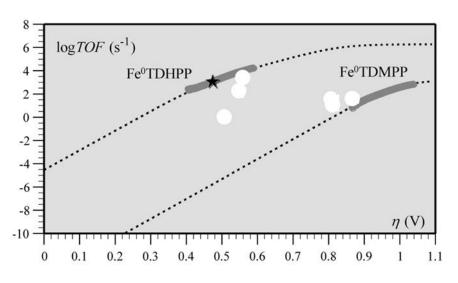

Cat + CF<sub>3</sub>CH<sub>2</sub>OH +CO<sub>2</sub> Big catalytic current for CO<sub>2</sub> reduction Only CO is produced

Cat + CF<sub>3</sub>CH<sub>2</sub>OH Small catalytic current for HER

Cat + CO<sub>2</sub> Small catalytic current for CO<sub>2</sub> reduction

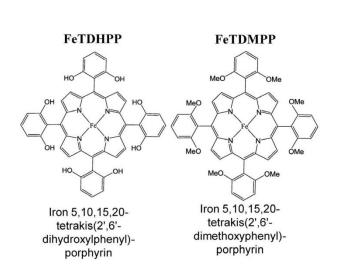
**Cat** (Fe(I) to Fe(0) at -1.6 V)

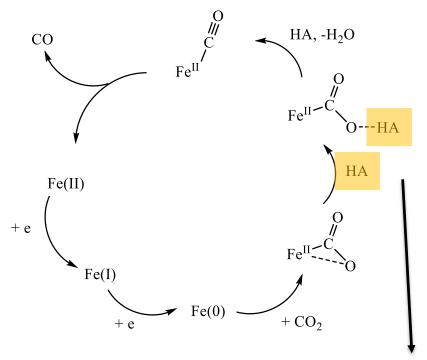

#### Proposed mechanism:




# How about putting hydrogen bonding units on the Fe-porphyrin complex?

FeTDHPP has a similar electronic property to FeTDMPP FeTDHPP can engage in hydrogen bonding, while FeTDMPP cannot.


# How about putting hydrogen bonding units on the Fe-porphyrin complex?






Having a hydrogen bonding unit in the molecule shifts the overpotential towards smaller values while maintaining similar turnover frequencies.

#### Proposed mechanism:





Intra-molecular proton donor speeds up the reaction

#### Conclusion

- The CO<sub>2</sub> emission is at a massive scale; only chemistry that uses a huge amount of CO<sub>2</sub> might have an impact in decreasing the global CO<sub>2</sub> emission.
- CO<sub>2</sub> is a relatively inert molecule that can be activated by a metal catalyst.
- Molecular complexes can serve as catalysts for electrocatalytic CO<sub>2</sub> reduction. The most abundant examples concern 2-electron reduction of CO<sub>2</sub> to form formate or CO. The selectivity might be controlled by tuning the ligand environment of the metal catalysts.